The secondary lead production begins with the recovery of old scrap from worn-out, damaged, or obsolete products and with new scrap. The chief source of old scrap is lead-acid batteries; other sources include cable coverings, pipe, sheet,and other lead-bearing metals. Solder, a tin-based alloy, may be recovered from the processing of circuit boards for use as lead charge.
Prior to smelting, batteries are usually broken up and sorted into their constituent products. Fractions of cleaned plastic (such as polypropylene) case are recycled into battery cases or other products. The dilute sulfuric acid is either neutralized for disposal or recycled to the local acid market. One of the three main smelting processes is then used to reduce the lead fractions and produce Lead bullion.
Most domestic battery scrap is processed in blast furnaces, rotary furnaces, or reverberatory furnaces. A reverberatory furnace is more suitable for processing fine particles and may be operated in conjunction with a blast furnace. Blast furnaces produce hard lead from charges containing siliceous slag from previous runs (about 4.5% of the charge), scrap iron (about 4.5%), limestone (about 3%), and coke (about 5.5%). The remaining 82.5% of the charge is made up of oxides, pot furnace refining drosses, and reverberatory slag. The proportions of rerun slags, limestone, and coke vary but can run as high as 8% for slags, 10% for limestone, and 8% for coke.
The processing capacity of the blast furnace ranges from 20 to 80 metric tons per day (tpd). Newer secondary recovery plants use lead paste desulfurization to reduce sulfur dioxide emissions and generation of waste sludge during smelting. Battery paste containing lead sulfate and lead oxide is desulfurized with soda ash, yielding market-grade sodium sulfate as a byproduct. The desulfurized paste is processed in a reverberatory furnace, and the lead carbonate product may then be treated in a short rotary furnace. The battery grids and posts are processed separately in a rotary smelter.
Prior to smelting, batteries are usually broken up and sorted into their constituent products. Fractions of cleaned plastic (such as polypropylene) case are recycled into battery cases or other products. The dilute sulfuric acid is either neutralized for disposal or recycled to the local acid market. One of the three main smelting processes is then used to reduce the lead fractions and produce Lead bullion.
Most domestic battery scrap is processed in blast furnaces, rotary furnaces, or reverberatory furnaces. A reverberatory furnace is more suitable for processing fine particles and may be operated in conjunction with a blast furnace. Blast furnaces produce hard lead from charges containing siliceous slag from previous runs (about 4.5% of the charge), scrap iron (about 4.5%), limestone (about 3%), and coke (about 5.5%). The remaining 82.5% of the charge is made up of oxides, pot furnace refining drosses, and reverberatory slag. The proportions of rerun slags, limestone, and coke vary but can run as high as 8% for slags, 10% for limestone, and 8% for coke.
The processing capacity of the blast furnace ranges from 20 to 80 metric tons per day (tpd). Newer secondary recovery plants use lead paste desulfurization to reduce sulfur dioxide emissions and generation of waste sludge during smelting. Battery paste containing lead sulfate and lead oxide is desulfurized with soda ash, yielding market-grade sodium sulfate as a byproduct. The desulfurized paste is processed in a reverberatory furnace, and the lead carbonate product may then be treated in a short rotary furnace. The battery grids and posts are processed separately in a rotary smelter.
0 comments:
Post a Comment